Microsoft SQL Server to Grafana

This page provides you with instructions on how to extract data from Microsoft SQL Server and analyze it in Grafana. (If the mechanics of extracting data from Microsoft SQL Server seem too complex or difficult to maintain, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is Microsoft SQL Server?

Microsoft SQL Server is a relational database management system that supports applications on a single machine, on a local area network, or across the web. SQL Server supports Microsoft's .NET framework out of the box, and integrates nicely into the Microsoft ecosystem.

What is Grafana?

Grafana is an open source platform for time series analytics. It can run on-premises on all major operating systems or be hosted by Grafana Labs via GrafanaCloud. Grafana allows users to create, explore, and share dashboards to query, visualize, and alert on data.

Getting data out of SQL Server

The most common way most folks who work with databases get their data is by using queries for extraction. With SELECT statements you can filter, sort, and limit the data you want to retrieve. If you need to export data in bulk, you can use Microsoft SQL Server Management Studio, which enables you to export entire tables and databases in formats like text, CSV, or SQL queries that can restore the database if run.

Loading data into Grafana

Analyzing data in Grafana requires putting it into a format that Grafana can read. Grafana natively supports nine data sources, and offers plugins that provide access to more than 50 more. Generally, it's a good idea to move all your data into a data warehouse for analysis. MySQL, Microsoft SQL Server, and PostgreSQL are among the supported data sources, and because Amazon Redshift is built on PostgreSQL and Panoply is built on Redshift, those popular data warehouses are also supported. However, Snowflake and Google BigQuery are not currently supported.

Analyzing data in Grafana

Grafana provides a getting started guide that walks new users through the process of creating panels and dashboards. Panel data is powered by queries you build in Grafana's Query Editor. You can create graphs with as many metrics and series as you want. You can use variable strings within panel configuration to create template dashboards. Time ranges generally apply to an entire dashboard, but you can override them for individual panels.

Keeping SQL Server data up to date

All set! You've written a script to move data from SQL Server into your data warehouse. But data freshness is one of the most important aspects of any analysis – what happens when you have new data that you need to add?

You could load the entire SQL Server database again. Doing this is almost guaranteed to be slow and painful, and cause all kinds of latency.

A better approach is to build your script to recognize new and updated records in the source database. Using an auto-incrementing field as a key is a great way to accomplish this. The key functions something like a bookmark, so your script can resume where it left off. When you've built in this functionality, you can set up your script as a cron job or continuous loop to get new data as it appears in SQL Server.

From Microsoft SQL Server to your data warehouse: An easier solution

As mentioned earlier, the best practice for analyzing Microsoft SQL Server data in Grafana is to store that data inside a data warehousing platform alongside data from your other databases and third-party sources. You can find instructions for doing these extractions for leading warehouses on our sister sites Microsoft SQL Server to Redshift, Microsoft SQL Server to BigQuery, Microsoft SQL Server to Azure SQL Data Warehouse, Microsoft SQL Server to PostgreSQL, Microsoft SQL Server to Panoply, and Microsoft SQL Server to Snowflake.

Easier yet, however, is using a solution that does all that work for you. Products like Stitch were built to move data from Microsoft SQL Server to Grafana automatically. With just a few clicks, Stitch starts extracting your Microsoft SQL Server data via the API, structuring it in a way that's optimized for analysis, and inserting that data into a data warehouse that can be easily accessed and analyzed by Grafana.